High order phase fitted multistep integrators for the Schrödinger equation with improved frequency tolerance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Phase-fitted Discrete Lagrangian Integrators for Orbital Problems

In this work, the benefits of the phase fitting technique are embedded in high order discrete Lagrangian integrators. The proposed methodology creates integrators with zero phase lag in a test Lagrangian in a similar way used in phase fitted numerical methods for ordinary differential equations. Moreover, an efficient method for frequency evaluation is proposed based on the eccentricities of th...

متن کامل

Phase-fitted discrete Lagrangian integrators

Phase fitting has been extensively used during the last years to improve the behaviour of numerical integrators on oscillatory problems. In this work, the benefits of the phase fitting technique are embedded in discrete Lagrangian integrators. The results show improved accuracy and total energy behaviour in Hamiltonian systems. Numerical tests on the long term integration (10 periods) of the 2-...

متن کامل

NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper t...

متن کامل

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Chemistry

سال: 2009

ISSN: 0259-9791,1572-8897

DOI: 10.1007/s10910-008-9510-4